
EXECUTIVE SUMMARY

In the industrial world, the pure greenfield development
project is a rare thing. In most cases, the greenfield portion of
a new project must still interoperate with a legacy system or
even multiple legacy systems. Today’s data-driven operations
rely on interconnected systems representing a mix of both
proprietary and open technology.

It is becoming more common for legacy systems to have to
expand or scale with non-traditional systems. An example
would be autonomous vehicle sensors and software working
with an internal legacy CAN bus, or a completely autonomous
vehicle interacting with road infrastructure elements that
include a mix of legacy and smart transportation elements.
The design practices that were and are still used to maintain
and operate legacy systems cannot be discarded. Some
legacy systems are difficult to modernize—the code upon
which they were built is decades old. It’s simply not practical
for engineering teams to create modern data-driven platforms
using legacy design practices. At the same time, engineers
must preserve the integrity of legacy systems that are based
on proprietary code. This can be costly: In virtually every
industrial system today, integration is the most expensive part
of expansion.

The software framework that bridges from legacy to modern
systems is the data-centric databus built on the Data
Distribution ServiceTM (DDS) standard. The DDS standard
has been used in thousands of systems to solve increasingly
complex design integration challenges without the need
for custom coding. Engineers can create multiple (even
hundreds) of DDS-based layers (databuses) to separate,
isolate and selectively share communications. It can do this
with an impressive and flexible set of mechanisms, notably
Quality of Service (QoS), filtering, automatic discovery
and security.

This paper covers the basics of a layered databus, including
the capabilities of layers, defining layers, connecting layers
and decomposing layers. It also provides use cases from
different industries on how the layered databus can be used
to address legacy interoperability requirements without
incurring the penalties of legacy design practices.

STRAINS AND CONSTRAINTS OF APPLYING LEGACY
DESIGN TO GREENFIELD SYSTEMS

With rare exception, most new applications in the industrial
world must integrate with legacy systems. Realistically, legacy
design practices are too cumbersome to support the rapid
expansion and scalability of digital operations. Virtually every
industry—aerospace, defense, healthcare, transportation,
manufacturing, oil and gas, utilities and others—is confronted
by the same problem:

How to create a communications platform that enables
legacy systems to scale to meet the proliferating demands
of the modern industrial network.

If engineers choose to use legacy design practices to respond
to these needs, there are significant penalties as illustrated in
Figure 1.

THE DIFFERENCE BETWEEN A DATABASE AND
A DATABUS

A database and a databus both handle structured data that
is either written or read, but there are key differences. The
data in the database is ‘at rest’. Unless it is being deposited
or retrieved, database information doesn’t go anywhere.
In contrast, the data that is handled by a databus is always
in motion, making it more suitable for systems requiring
scalability and real time or near real-time information in order
to operate as designed. It is important to note that a databus
isn’t a competitive technology to a database; rather, both play
a role in handling massive amounts of data, as is illustrated in
Figure 2.

The Layered Databus Architecture
WHITEPAPER

USING A DATA-CENTRIC APPROACH TO BRIDGING
LEGACY SYSTEMS WITH MODERN SYSTEM DESIGN

http://www.rti.com

WHITEPAPER • THE LAYERED DATABUS ARCHITECTURE

2

Figure 1: Challenges of legacy design practices in modern system architecture.

 Strained resources Constrained scalability

•	 Depending on the diversity of applications, devices
and systems that need to be interconnected, the
entire design process may be repeated over and
over again. For example,

•	 Some systems that are connected may
require fault tolerance, while others require
low latency. With proprietary development,
these differences may send each system to
a different development team to address its
unique requirements, with a limited ability to
reuse code between the two teams.

•	 Proprietary systems tend to be one-to-one
undertakings, not plug-and-play platforms.
For example:

•	 A majority of proprietary systems use sockets
for communications; adding a new piece
of hardware or application requires custom
building a new socket. In addition, these
sockets are single purpose and have no ability
to apply other functions such as QoS, data
filtering or enhanced security.

•	 Proprietary design methodologies and monolithic
architectures often create single points of failure
and a multitude of security gaps as the system is
scaled and extended.

Figure 2: The database and the databus both play a role in optimizing data management in modern industrial systems.

•	 The cost of development for a proprietary system
is substantial compared to using a standards-
based platform.

•	 With proprietary design practices, companies and
institutions may be dependent on a small number
of vendors (or even a single vendor) to design and
build any major extensions.

•	 Documentation for proprietary systems is
notoriously poor, making it difficult to transition
responsibilities for systems development to other
vendors, new staff or internal development teams.

•	 Complex, proprietary systems increase dependence
on a few knowledgeable people in the organization;
bringing new people up to speed can require
extensive training.

•	 The time to complete a project is likely to be
months and even years, depending on the
complexity of the connected systems.

•	 There may be a high failure rate associated with
these projects, or an inability to meet all of the
project goals.

•	 Complex programming translates into high
maintenance costs.

•	 The constant demand for new connections puts
additional strain on design, development and
testing teams.

•	 Data is stored.

•	 The databus acts as a centralized
broker that’s holding information.

•	 Each databus handles specific
data or application types.

•	 THe more brokers required to
search, sort and retrieve data, the
slower the response date.

•	 Security is external and applied to
all data on the server.

•	 Data is in motion.

•	 Data sources are directly
connected o the applications,
devices, etc., that need the data

•	 There is no intermediary
(broker or messenger) to
impede the flow of data.

•	 Security is embedded; appropriate
security is applied by data type.

http://www.rti.com

WHITEPAPER • THE LAYERED DATABUS ARCHITECTURE

3

THE DDS DATABUS

The Object Management Group® publishes and maintains
the family of specifications based on the Data Distribution
ServiceTM (DDS) standard. DDS is a communications protocol;
the DDS communications layer is based on a software
databus that runs via a publish/subscribe model. The DDS
databus is essentially a shared global space where data is
continuously flowing to and from its intended and authorized
recipient(s), multiplied by the hundreds, thousands or millions
of publishers or subscribers. Following are just some of the
notable characteristics of a databus:

•	 Data-centricity: This refers to data awareness that
enables things like intelligent filtering of data and
delivering data to the right location at the right time.

•	 Built-in QoS: QoS parameters can include such
information as the rate at which the samples or data
will be republished, the reliability of the delivery and the
security of data flow.

•	 Shared data model: The shared data model eliminates
data brokers or intermediaries and leads to scalability
and expandability in multi-layered databuses.
Applications can directly read and write data values,
eliminating bottlenecks and contributing to fast,
efficient communications. Data samples are cached
locally within the readers and writers. Key advantages
are: Designers can define all of the topics in their
systems, without writing any code; designers can use
any data model they prefer; data models are consistent
throughout every layer as well as the application
life cycle.

•	 Automatic discovery: A new application or device
joining the databus can be provided with previously
published state data.

•	 Integrated system: All applications, devices,
modules and subsystems work together as one
integrated system.

•	 Security: The DDS standard includes a plug-in
security architecture that connects to a DDS library.
The library includes numerous mechanisms, such
as: discovery authentication; data-centric access
control; cryptography; data tagging and logging; non-
repudiation; and secure multicasting.

Note: In describing the databus, “layer” and “domain” are often
used interchangeably. In particular, “domain participants” is
the description used throughout this paper (and in the DDS
standard) to encompass all types of interconnected “things,”
such as sensors, devices, applications, endpoints, users,
systems, etc.

THE LAYERED DDS DATABUS

When there is more than one DDS databus in a design—and
there is a need to share information across those databuses—
the layered databus comes into play. A layered databus
is a multi-domain databus architecture where different
domains are served by their own databuses, with the ability
to interconnect and enable communications between
layers. This provides a common or unifying communications
architecture across distributed and/or disparate systems.
This architecture provides low-latency, secure, peer-to-peer
data communications across logical layers of the system.

The information that is shared between databuses is selective
and is based on the DDS publish/subscribe method. That is,
the designer chooses the data that one layer requires from
another. Not all information is relevant or important.

A layered databus can greatly simplify potential complexity.
Specifically, designers are often looking for a way to achieve
scalability in order to support hundreds of thousands of
devices and applications without additional complexity. Other
benefits of layered databuses include:

•	 Fast device-to-device integration with delivery times
in milliseconds or microseconds

•	 Automatic data and application discovery with and
between databuses

•	 Scalable integration comprising hundreds of thousands
of domain participants

•	 Natural redundancy allowing extreme availability
and resilience

•	 Hierarchical subsystem isolation enabling development
of complex systems design

•	 Security that is customizable via any standard API
and runs over any type of transport

Figure 3: A single DDS databus layer might be defined by its function, such as command and control.
Layers can also be defined by a physical location, communication protocol, behavior or other characteristics.

C
o

m
m

an
d

S
ta

te

D
is

p
la

y

App

App App...

http://www.rti.com

WHITEPAPER • THE LAYERED DATABUS ARCHITECTURE

4

In most modern industrial systems, applications need to share
information with other applications in order to perform as
designed. The Industrial Internet Consortium® recommends
the layered databus as an architectural communications
pattern for industrial IoT applications in its Industrial Internet
Reference Architecture (IIRA)1. The IIRA is a standards-based
architectural guideline for designing IIoT systems based on a
common framework.

In industrial systems, one common architecture pattern is
made up of multiple databuses layered by communication
QoS and data model needs. Typically, databuses will be
implemented at the edge of a system, which typically
represents data collected from sensors or devices used in
running smart machines or lower level subsystems as part of a
complex system (e.g., a car, an oil rig or a hospital).

On another hierarchy level, there can be one or more databuses
that integrate additional machines or systems, facilitating
data communications between and within the higher-level
control center or backend systems. The backend or control
center layer could be the highest layer databus in the system,
but there can be more than these three layers. Many layers are
possible, as discussed in this white paper.

BUILDING BLOCKS OF A LAYERED DATABUS

This section covers the building blocks of a layered databus.
It is important to note that the DDS databus provides
flexibility in design choices. For each of the architectural
elements discussed here, there may be compelling reasons for
a different approach in a particular use case design.

Defining the layers
It is certainly possible to have a design in which all information
is localized, requiring only a single DDS databus. But for
more complex systems—such as a connected hospital, or
an autonomous vehicle—the layered databus architecture
is necessary.

A layered databus enables the separation and securing of
different domains. In fact, isolating data is a critical component
of a layered databus architecture, while ensuring that the
relevant information is shared across layers.

There is also the benefit of consistency while scaling. That
is, each layer has the same design and features of the DDS
databus, which eliminates the need to recreate a new databus
from scratch for each layer.

The first step in interconnecting layers is to define them.
There are many options for designating different
layers, including:

•	 Domains, identified by a unique integer value known
as a domain ID.

•	 Partitions, to control which DataWriters will match
(and communicate with) which DataReaders.

•	 Multicast groups, for data transfer between applications
that are running on the same node.

•	 Function or purpose, such as a supervisory layer or
analytics layer.

•	 Scope of interest, which pertains to the responsibilities
and interests of whoever or whatever is sending and
receiving data.

•	 Location, such as a patient monitor, an autonomous
vehicle, an oil rig, etc.

•	 Transport type, such as UDPv4 or TCPv4.

Connecting the layers
Each layer must have a logical connection to the other, as
shown in Figure 4. This connection is sometimes referred to
as a bridge or gateway. A single gateway can route data to
a single layer or multiple layers. Because the DDS databus
standard ensures that the APIs are consistent, designers can
use their own bridging technology to connect layers.

The RTI gateway (called the RTI Routing Service) provides
comprehensive services while giving designers tremendous
flexibility in how these services are applied. Here are
some examples:

QoS: Data that flows within and between layers are configured
via QoS settings that define how data is delivered between
a publisher and subscriber. In the DDS standard, these data
flows are called topics. This is a user-configurable parameter,
so designers can set individual topics for specific ranges.

Filtering: This is a mechanism that enables designers to
select data that meets a certain criteria, e.g., above or below
a specific number such as temperature or density. Data that
meets the required identified parameters will be shared with
its subscribers. Data that does not meet the parameters will
not be shared. For example, in a smart factory, only data that
is outside the normal ranges may be passed along to the
maintenance department, as an indication that a machine is
about to malfunction. One of the benefits of the DDS databus
and RTI Routing Service is that data can be selectively filtered
based on the contents of the data. That provides designers
with highly-granular resolution of data separation, meaning
the ability to separate individual pieces of data based on
specific values (at either the source or destination).

Automatic discovery: Discovery is automatic, but also
controlled. Designers can choose automated discovery
between Layer 1 and Layer 2, but not with participants in
Layer 3. Discovery can even be fine-tuned to the degree of
discovery that is automated.

Interoperability of the layers
With the DDS databus standard, designers have more than
one option for achieving interoperability, for example:

•	 Translation for modification of information, perhaps to
create a common way to represent diverse information
(e.g., translating temperature from Fahrenheit to Celsius)

•	 Adaptation to connect different technologies (e.g.,
connecting DDS to MQTT or the distributed interactive
simulation protocol [DIS])

•	 Shims for supporting an old API in a new environment or
a new API in an older environment

Decomposing the layers
How many layers are needed for a design? Is there a minimum
or maximum number?

1 Industrial Internet Consortium

http://www.rti.com
https://www.iiconsortium.org/IICF.htm

WHITEPAPER • THE LAYERED DATABUS ARCHITECTURE

5

Figure 4: A simple view of a layered architecture connected by a gateway.

This is a question that should be considered early in the
design process and then revisited during the design and
build. The process of breaking a big system into a collection
of subsystems (or layers/domains) is called decomposing.

There are certainly many ways to decompose a large system
into layers. In each design, it is important to decide when the
architecture has enough layers to do the job, but not so many
as to add unnecessary complexity. A best practice is to add a
layer and then apply the logical decomposition test. If it fits
the requirements or, alternatively, performance is not what
it needs to be, then the next step is to add another criteria.
As a best practice, these are the three most commonly
used metrics for evaluating the efficacy of a layer in a
multi-layer architecture:

•	 Discovery timing

•	 Application of resources

•	 Latency

Security
Security is important throughout all the layers. With a DDS
databus, security is a separate implementation that enables
security without impacting the logic and function of the
application. This means that security can evolve without
having to reprogram applications, with the reverse also true.

The DDS databus enables security requirements by providing
authentication, access control, cryptography and logging
capabilities for secure data distribution. DDS security is
independent of application logic and can, therefore, be applied
separately without affecting the application’s functionality.
This separation enables the application data model, logic and
security requirements to evolve separately with little to no
impact to one another.

USE CASES

The following are sample industry-specific use cases. It is
important to note that the inherent flexibility of the DDS
databus means that the technology doesn’t dictate or restrict
how a layered databus architecture might be set up. The
layered databus is not prescriptive; it’s highly customizable.
Note that customizable does not mean proprietary
programming; it refers to the inherent flexibility within the
standard to accomplish something in many different ways.
Each of these use cases could be designed differently, while
still adhering to—and getting all the benefits of—a standards-
based approach.

Healthcare: patient monitoring
This example focuses on monitoring at the patient bedside.
Typically, patient monitors are based on proprietary software
and hardware that provide information on the patient’s
condition. Often these independently monitor specific
conditions and do not interact with other equipment.

As shown in Figure 5, there are many other devices at the
bedside, such as pumps, ventilators and EKGs. For the most
part, these devices operate independently and are usually
based on proprietary designs. This means they have their own
interfaces that the clinicians have to read, and the data output
from each device has to be recorded separately. In order to
get a complete picture of the patient’s health, the clinician has
to consult numerous records from these different systems,
which can lead to errors and delays in care. Some of this
information is collected intermittently and some continuously.
Some of this data is critical to the patient’s status, while other
data is of lesser importance.

Layer 1, as shown here, provides a communications platform at
the bedside for all these independent devices to communicate
with each other as needed.

http://www.rti.com

WHITEPAPER • THE LAYERED DATABUS ARCHITECTURE

6

Layer 2 allows clinicians to view any patient bedside data,
selectively, from any location. This selectivity is enabled by
filtering, which is just one of the capabilities enabled by RTI
Routing Services.

Layer 3 provides a communications platform for all of the
hospital enterprise-level databases. These databases need
to collect information, such as radiology reports and images,
without impeding the flow of information to and from clinicians
and all of the data from bedside monitoring systems. This is
another capability of RTI Routing Services and the layered
databus design: the ability to isolate critical data from non-
critical data.

Transportation: autonomous vehicles
One of the many benefits of the layered databus is the
unified data model. Autonomous vehicles may seem like
an entirely new type of transportation. But, in fact, many
of their subsystems are legacy and proprietary, from the
braking system to the CAN bus. In this example (Figure 6),
Layer 1 is the databus for vehicle control, which is a mix of
autonomous and non-autonomous elements. Layer 1 can
be utilized as the communications platform between the
lower bandwidth legacy systems and the higher bandwidth
sensors required to provide autonomous capabilities.

Layer 2 may also be within the vehicle. In this example, Layer 2
supports telematics. Note that there is a gateway (RTI Routing
Service) between the two layers. One of the important roles
of the gateway is to isolate critical safety-related data flowing
across Layer 1 from non-critical telematics in Layer 2. The
design goal is that any failure in telematics will not affect the
safe operation of the vehicle. The DDS databus includes built-
in security to protect the system against unauthorized traffic.

Layer 3 provides the communications platform for the
municipal cloud. These cloud-based services provide critical

communications with Layer 2. This constant flow of two-
way communications provides vital information on road
conditions, weather patterns, accidents and detours, etc.

As the diagram shows, there can be other layers for vehicle-to-
vehicle communications, fleet management communications
and much more.

With the unified data model, engineering teams can use a
consistent data model from the smallest sensor in the car up to
the cloud. In contrast, proprietary implementations may have
different teams working on different protocols and interfaces.
The unified data model not only eliminates this resource drain,
it also means that if there are changes to the platform, protocols
or architecture, it will not mean redesigning applications.

Utilities: distributed energy resources
In recent years, distributed energy models, including
microgrids, have been proliferating because of the rise of
renewable energy. A microgrid operates in a defined area, e.g.,
a neighborhood, where the microgrid operator can manage
the microgrid without affecting the integrity of the entire grid.
As shown in Figure 7, the Layer 1 databus is the
communications platform that provides automated discovery
of any new renewable energy source, such as solar panels and
wind turbines. This eliminates dependence on technicians to
set up monitoring and control systems for each new system
that joins the microgrid, which, in turn, keeps costs down.

Layer 2 adds a databus for analytics to support predictive
analysis that can be used to optimize the performance of one
or all of the microgrids. For example, this data can also be
used to minimize an unexpected power draw from the main
grid in case of a microgrid failure.

Figure 5: The layered databus architecture in a hospital use case.

http://www.rti.com

WHITEPAPER • THE LAYERED DATABUS ARCHITECTURE

7

Layer 3 talks to the main grid, where regulation is extremely
heavy. Each authority served by Layer 3 has its own legacy
processes. The microgrid has to be able to provide the
necessary compliance information in whatever legacy format

is required. This highlights one of the features of the DDS
databus, which is the ability to provide interoperability with
legacy protocols without any special programming.

Figure 6: : Sample layered databus architecture used in an autonomous vehicle scenario.

Figure 7: Sample layered databus architecture used in a distributed energy resource (DER) environment

http://www.rti.com

RTI, Real-Time Innovations and the phrase “Your systems. Working as one,” are registered trademarks or trademarks
of Real-Time Innovations, Inc. All other trademarks used in this document are the property of their respective owners.
©2020 RTI. All rights reserved. 50048 V0 0920 8

WHITEPAPER • THE LAYERED DATABUS ARCHITECTURE

232 E. Java Drive, Sunnyvale, CA 94089
Telephone: +1 (408) 990-7400
Fax: +1 (408) 990-7402
info@rti.com

CORPORATE HEADQUARTERS
rti.com

rti_software

rtisoftware

company/rti

connextpodcast

rti_software

CONCLUSION

A layered databus architecture creates a virtual plug-and-play
communications platform to modernize and expand legacy
applications and systems. It eliminates the need to recompile,
rebuild, revalidate and reset proprietary monolithic systems
when a new subsystem needs to connect.

Layered DDS databuses solve complex problems of expansion
and scalability without sacrificing the granularity and control
that complex, interconnected designs require. The layered
databus architecture makes it comparatively easy to enable
proprietary systems to interoperate with new systems. Layers
are transparent and operate automatically: they separate
and share based on the needs of the domain publishers
and subscribers.

The layered databus architecture preserves the integrity of
legacy systems, while opening up designs to a limitless array
of new participants. Industrial engineers can utilize the layered
databus to create a sustainable architecture that bridges from
their existing brownfield systems to modern systems while
allowing for future flexibility and requirements.

For more information about how a layered databus can work
in your system architecture, please visit www.rti.com.

Real-Time Innovations (RTI) is the largest software framework provider for smart machines and real-world systems.
The company’s RTI Connext® product enables intelligent architecture by sharing information in real time, making large
applications work together as one.

With over 1,500 deployments, RTI software runs the largest power plants in North America, connects perception to control in
vehicles, coordinates combat management on US Navy ships, drives a new generation of medical robotics, controls hyperloop
and flying cars, and provides 24/7 medical intelligence for hospital patients and emergency victims.

RTI is the best in the world at connecting intelligent, distributed systems. These systems improve medical care, make our roads
safer, improve energy use, and protect our freedom.

RTI is the leading vendor of products compliant with the Object Management Group® (OMG) Data Distribution Service™ (DDS)
standard. RTI is privately held and headquartered in Sunnyvale, California with regional headquarters in Spain and Singapore.

Download a free 30-day trial of the latest, fully-functional Connext DDS software today: https://www.rti.com/downloads.

ABOUT RTI

http://www.rti.com
http://www.rti.com
http://www.rti.com
https://www.instagram.com/rti_software/
https://soundcloud.com/connextpodcast
http://www.rti.com
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
https://www.linkedin.com/company/rti/
https://soundcloud.com/connextpodcast
https://www.instagram.com/rti_software/
https://www.linkedin.com/company/rti/
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
http://www.rti.com
http://www.rti.com/downloads

